
Microsoft® 
Operating System/2 

Programmer's Toolkit 

Programmer's Reference 

Versionl.O 

Microsoft Corporation 



Information in this document is subject to change without notice and does not 
represent a commitment on the part of Microsoft Corporation . The software 
and/or databases described in this document are furnished under a license agree­
ment or nondisclosure agreement. The software and/or databases may be used or 
copied only in accordance with the terms of the agreement. The purchaser may 
make one copy of the software for backup purposes. No part of this manual and/or 
database may be reproduced or transmitted in any form or by any means, elec­
tronic or mechanical, including photocopying, recording, or information storage 
and retrieval systems, for any purpose other than the purchaser's personal use, 

. without the written permission of Microsoft Corporation. 

© Copyright Microsoft Corporation�-. 1988. All rights reserved. 
Simultaneously published in the U.;:,. and Canada. 

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of Microsoft 
Corporation. 

Intel® is a registered trademark of Intel Corporation. 

IBM® and PC/AT® are registered trademarks, and Personal System/2@) is a trademark, of 
International Business Machines Corporation. 

Document No. 060060014-100-R00-0388 
Part No. 01887 



Format of MS OS/2 Executable Files 

D.l Introduction 

This appendix describes the format of the MS OS/2 executable files. This 
file format is used for both programs and dynamic- link libraries. The 
linker creates the executable file by, using object files, run-time and import 
libraries, and a module-definition file. Figure D. l shows the executable file 
format : 

OxOOOO + - - - - - - - - - - - - - - - - - +  

I O l d  EXE Header I 
+ - - - - - - - - - - - - - - - - - + 

Ox0020 1 Reserved 1 
+ - - - - - - - - - - - - - - - - - + 

Ox003C 1 O f fset to New + - - - - + 

I EXE Header 1 
Ox0040 + - - - - - - - - - - - - - - - - - +  

I MS-DOS 2 . 0 Stub I 
1 Program & I 
I Re loc . Table  1 

oxooxx + - - - - - - - - - - - - - - - - - +  < - - +  

I New EXE Header 1 \ 
+ - - - - - - - - - - - - - - - - - +  \ 
I Segment Tab l e  1 \ 

+ - - - - - - - - - - - - - - - - - +  : 
I Resource 1 MS OS/2 and Windows 
I Table 1 : - - - - -keep this as part o f  

+ - - - - - - - - - - - - - - - - - + I their MODULE tab le .  
Resident-Name I I 

Table  1 1 
+ - - - - - - - - - - - - - - - - - + I 
1 Module-Re f 1 / 
1 Table  1 / 

+ - - - - - - - - - - - - - - - - - + 

I Imported-Names 
I Table 1 

+ - - - - - - - - - - - - - - - - - +  

: Entry Table  I 
+ - - - - - - - - - - - - - - - - - +  

Nonresident- I 
I 

Name 1 
1 Tab le l 

+ - - - - - - - - - - - - - - - - - + 

Seg #1 Data 1 
1 Seg #1 Info : 

+ - - - - - - - - - - - - - - - - - +  

+ - - - - - - - - - - - - - - - - - +  

Seg #n Data I 
1 Seg #n Info 1 

+ - - - - - - - - - - - - - - - - - +  

Figure D.l Executable-File Format 

557 



Microsoft Operating System/2 Programmer's Reference 

D. 2 MS-DOS Executable Header 

An MS OS/2 executable file starts with a slightly modified MS-DOS exe­
cutable header followed by the MS-DOS program data. The MS OS/2 exe­
cutable file is a concatenation of an MS-DOS program and an MS OS/2 
program. The MS-DOS program is usually a small stub program that 
displays an error message if a user loads and runs the executable file in 
MS-DOS . However, the linker can substitute a complete MS-DOS program 
for the stub. 

In an MS-DOS executable file, the word at offset Ox0018  contain the rela­
tive byte offset to the relocation table . In an MS OS/2 executable file, this 
word is set to Ox0040 to indicate that the format of the executable file is 
for MS OS/2.  In such cases, the double word at offset Ox003C is the rela­
tive byte offset from the beginning of the MS OS/2 executable file to the 
beginning of the executable file header. 

The following list shows the contents of the various fields in the MS-DOS 
program portion of the MS OS/2 executable file: 

Field 

OxOOOO-OxOOlF 

Ox0018 

Ox0020-0x003B 

Ox003C-Ox003F 

Ox0040 

Description 

Contains the header for the MS-DOS executable file . 

Contains the value Ox0040 to indicate an MS OS/2 exe­
cutable file . 

Contains reserved values. 

Contains a double word that specifies the offset from 
the beginning of the MS OS/2 file to the start of the MS 
OS/2 executable file header. 

Contains the first byte of the MS-DOS program. The 
length is defined in the MS-DOS executable file header .  

D.3 New Executable Header 

The new executable header defines the location and size of the various 
tables and segments in the executable file . The MS OS/2 loader uses this 
header to create a module table for each program and each dynamic- link 
library . Specifically, it uses the fields that start at offset Ox0008 . 

Many fields in the executable header use segment numbers to identify seg­
ments in the program or library . A segment number is an index into the 
module 's segment table . The first entry in the segment table is number 1 .  

558 



Format of MS OS/2 Executable Files 

In the following list, OxOOOO is specified as the starting offset of the execut­
able file .  The actual starting offset depends on the length of the MS-DOS 
program at the beginning of the executable file .  The executable file header 
always starts immediately after the end of the MS-DOS program. 

Field Description 

OxOOOO Specifies the signature of the MS OS/2 executable file . 
It is Ox454E (that is , the letters "NE" for "new execut­
able" ) . 

Ox0002 Contains the linker version and the revision number. 
The linker version is in the low-order byte, the revision 
number is in the high-order byte. 

Ox0004 Specifies the offset from the beginning of the file to the 
entry table . 

Ox0006 Specifies the number of bytes in the entry table .  

Ox0008-0xOOOA Specifies the CRC-32 of the entire contents of the file 
(with the following words taken as zero during the cal­
culation) . 

OxOOOC Specifies the flag word. It can be a combination of the 
following values: 

OxOOOE 

OxOOIO 

Value 

OxOOOO 
OxOOOl 

Ox0002 

Ox0004 

Ox0008 

Ox2000 

Meaning 

No automatic data segment .  

Single data segment (nonshared) . 
Multiple data segments (shared) . 
Run in real mode . 

Run in protected mode .  

Errors detected at  link time. 

Ox4000 Non-conformin� program (a valid stack is 
not maintained) . 

Ox8000 Library module .  

The OxOOOI and Ox0002 values cannot be used together . 
The OxOOOl value is required for programs or libraries 
that export functions for dynamic linking. 

Specifies the segment number of the automatic data 
segment . This field is set to zero if the module has no 
automatic data segment .  

Specifies the initial size in bytes of the dynamic heap 
added to the data segment .  This field is set to zero if 
there is no heap. 

559 



Microsoft Operating System/2 Programmer's Reference 

Ox0012 

Ox0014-0x0016  

Ox0018-0x001A 

OxOOlC  

OxOOlE  

Ox0020 

Ox0022 

Ox0024 

Ox0026 

Ox0028 

Ox002A-Ox002C 

Ox002E 

Ox0030 

Ox0032-0x003E 

560 

Specifies the initial size in bytes of the stack added to 
the data segment .  This field is set to zero if there is no 
stack .  

Specifies the starting address of the program or of the 
library's initialization function . The low-order word is 
the offset (IP); the high-order word is the segment 
number of the starting segment (CS) .  The address 
specifies the entry point of the initialization function 
only if the executable file defines a library module .  

Specifies the starting address of the stack .  The low� 
order word is the offset (SP); the high-order word is the 
segment number of the stack segment (SS) .  If the 
number of the stack segment is the same as the number 
of the automatic data segment  and the offset is zero, 
the loader creates a stack in the automatic data seg­
ment and sets the starting address to be the address of 
the last word in that stack .  This field is ignored if the 
executable file defines a library module. 

Specifies the number of entries in the segment table . 

Specifies the number of bytes in the nonresident-name 
table . 

Specifies the offset of the segment table relative to the 
beginning of the new executable header . 

Specifies the offset of the resource table relative to the 
beginning of the new executable header. 

Specifies the offset of the resident-name table relative to 
the beginning of the new executable header .  

Specifies the offset of the module-reference table relative 
to the beginning of the new executable header. 

Specifies the offset of the imported-names table relative 
to the beginning of the new executable header .  

Specifies the offset of  the nonresident-name table rela­
tive to the beginning of the file . 

Specifies the number of movable entry points. 

Specifies the shift count of the logical sector alignment. 
The alignment specifies the byte boundary on which a 
segment starts. It is expressed as an exponent of 2 ;  for 
t�e default alignment of 512  bytes, the shift count 9 is 
gtven .  

Specifies reserved values. 



Format of MS OS/2 Executable Files 

The system loader creates a stack for a program if the stack segment is the 
same as the automatic data segment. The loader adds the stack to the end 
of the data segment, setting the stack pointer to the top of the automatic 
data segment .  If the data segment also has a heap area, the stack is 
between the data and heap .  

D.4 Segment Table 

The segment table defines the location , size, and type of the code and data 
segments of the module. The segment table contains one or more entries . 
Each entry specifies the location of the code and data segments in the exe­
cutable file , the size of the segment data in the file, the size of the segment 
when loaded into memory, and a flag word that specifies the segment type . 
The number of segment entries in the table is specified by field OxOOl C in 
the executable file header. 

Many fields in the executable file header use segment numbers to identify 
segments in this table . Segment number 1 identifies the first segment table 
entry, number 2 the second,  and so on. 

Each entry in the segment table has the following fields: 

Field 

OxOOOO 

Ox0002 

Ox0004 

Description 

Specifies the logical sector offset to the contents of the 
segment data relative to the beginning of the file . The 
actual offset is computed by multiplying this offset with 
the logical sector size as defined by field Ox0030 in the 
executable file header. This field is zero if there is no file 
data. 

Specifies the length in bytes of the segment in the file . It 
is zero if the segment is 65,536 bytes. 

Specifies the flag word .  It can be a combination of the 
following values: 

Value 

OxOOOO 

OxOOOl 

Ox0008 

OxOOlO 

Ox0020 

Meaning 

Code-segment type . 

Data-segment type . 

Segment data is iterated . 

Segment is movable. 

Segment can be shared . 

561 



Microsoft Operating System/2 Programmer's Reference 

Ox0040 

Ox0080 

OxOlOO 

Ox0200 

OxOCOO 

OxFOOO 

Segment is not demand loaded. 

Segment is execute-only if code,  or read­
only if data. 

Set if segment has relocation records. 

Set if segment has debug information. 

Reserved for 286 DPL bits. 

Discard priority . 

Ox0006 Specifies the minimum allocation size of the segment in 
bytes. This may be larger than the size of the segment 
in the file . If this field is zero, the minimum size is 
65,536 bytes. 

D. 5 Resource Table 

The resource table specifies the location , size , type, and name of resources 
in the module . Resources are additional data that may be loaded from the 
executable file as needed by a program or library . Figure D.2 shows the 
form of the resource table: 

+ - - - - - - - - - - - - - - - - - - - - - - - - + 

I Alignment Shi ft Count I 
+ - - - - - - - - - � - - - - - - - - - - - - - - + 

1 Resource Type Header I 
+ - - - - - - - - - - - - - - - - - - - - - - - - +  

Resource Entries I 
+ - - - - - - - - - - - - - - - - - - - - - - - - + 

I Resource Type Header I 
+ - - - - - - - - - - - - - - - - - - - - - - - - +  

1 Resource Entries I 
+ - - - - - - - - - - - - - - - - - - - - - - - - +  

+ - - - - - - - - - - - - - - - - - - - - - - - - +  

I Type Strings I 
+ - - - - - - - - - - - - - - - - - - - - - - - - +  

Figure 0.2 Resource Table 

The first word in the resource table specifies the alignment shift count for 
resource data. The alignment shift count is an exponent of 2 that defines 
the number of bytes in each alignment sector. The location of a resource in 
the executable file is computed by multiplying its alignment offset by the 
alignment sector size . 

562 



Format of MS OS/2 Executable Files 

The resource table contains two or more resource-type headers. Each 
header has the following fields: 

Field Description 

OxOOOO Specifies the type identifier. It is an integer type if the 
high-order bit is set (Ox8000) . Otherwise, it is an offset 
to a type string, relative to the beginning of the 
resource table. If this field is zero, it specifies the end of 
the resource records. 

Ox0002 Specifies the number of resources for the type .  

Ox0004-0x0006 Specifies a reserved value . 

The resource- type header is immediately followed by the specified number 
E>f resource entries . Each resource entry has the following fields: 

Field 

OxOOOO 

Ox0002 

Ox0004 

Description 

Specifies the alignment offset to the contents of the 
resource data, relative to the beginning of the file . The 
offset is given in terms of alignment units specified at 
the beginning of the resource table . 

Specifies the length in bytes of the resource in the file . 

Specifies the flag word. It can be a combination of the 
following values: 

Value 

OxOOlO 

Ox0020 

Meaning 

Resource is movable . 

Resource can be shared .  

Ox0040 Resource is not demand loaded. 

Ox0006 Specifies the resource identifier. It is an integer type if 
the high-order bit is set (Ox8000) . Otherwise, this field 
is the offset to the resource string relative to the begin­
ning of the resource table . 

Ox0008-0xOOOA Specifies a reserved value .  

Resource type and name strings are stored at the end of the resource table . 
The first byte of each string specifies the length of the string in bytes . If it 
is zero, it specifies the end of the resource table. The strings can contain 
any characters. They are not null-terminated. 

563 



Microsoft Operating System/2 Programmer's Reference 

D.6 Module-Reference Table 

The module-reference table specifies the location of the names of the 
modules imported by the module . The names are character strings and are 
stored in the imported-names table . 

The table contains one or more entries. Each entry specifies the offset 
(within the imported-names table) to the module-name string. Each entry 
has a unique module reference . A module reference is an index into the 
module-reference table . Module reference 1 identifies the first entry, 2 the 
second, and so on .  Other tables use module references to identify the name 
of the module that contains a given imported function . 

D. 7 Entry-Point Table 

The entry-point table defines the segment, offset, and type of entry points 
used in the module . The table contains one or more bundles. Each bundle 
describes the entry points of a given segment .  Each bundle starts with the 
following fields: 

Field 

OxOOOO 

OxOOOl 

Description 

Specifies the number of entries in this bundle . All 
records in one bundle either are movable or refer to the 
same fixed segment .  This field is zero if there are no 
more bundles in the entry table . 

Specifies the segment indicator for this bundle . If it is 
OxFF, it specifies a movable segment, and the segment 
number is in the following 6-byte entry. If it is any 
other value (OxOO is not used) , it is the segment number 
of a fixed segment .  

For movable segments, the entry record has the following fields: 

Field 

OxOOOO 

OxOOOl 

Ox0003 

Ox0004 

564 

Description 

Specifies the flags . If is it OxOl ,  the entry point is 
exported .  If it is Ox02, the entry point uses a shared 
data segment .  

Specifies an  int 3Fh instruction . 

Specifies the number of the entry-point segment . 

Specifies the offset to the entry point .  



Format of MS OS/2 Executable Files 

For fixed segments, the entry record has the following fields: 

Field 

OxOOOO 

OxOOOl 

Description 

Specifies the flags . If is it OxOl ,  the entry point is 
exported .  If it is Ox02, the entry point uses a shared 
data segment .  

Specifies the offset to the entry point .  

For movable and fixed entry points that use shared data segments, the 
following instruction must be the first instruction in the prologue of the 
entry point :  

mov ax, ds-value 

This flag may be set only for SINGLEDATA library modules. 

Each entry point has a unique ordinal value .  The ordinal value is an index 
into the entry-point table . The first entry point described in the table has 
ordinal value 1 ,  the second has 2 ,  and so on . When the loader searches for 
an entry point ,  it scans the bundles until it finds the segment that con­
tains the entry point .  It then multiplies the ordinal value by the entry size 
to index the proper entry . 

The linker forms bundles in the densest manner it can, under the restric­
tion that it cannot reorder entry points to improve bundling. The reason 
for this restriction is that other executable files may refer to entry points 
within this bundle by ordinal value instead of by name . 

D.8 Resident- and Nonresident-Name Tables 

The resident- and nonresident-name tables specify the names of the entry 
points in the module. The tables contain one or more entries. Each entry 
has the form shown in Figure D.3 :  

+ - - - - - - - - - - - - - - - - - - + 

: Length o f  Name : 
+ - - - - - - - - - - - - - - - - - - + 

: Name : 
+ - - - - - - - - - - - - - - - - - - + 

: Ordinal Va lue 1 
+ - - - - - - - - - - - - - - - - - - +  

Figure D.3 Resident- and Nonresident-Name Table Entry Format 

565 



Microsoft Operating System/2 Programmer's Reference 

The first field is a byte that specifies the length of the string. If the field is 
zero, it specifies the end of the table . The second field is the name, a char­
acter string. The string is not null-terminated. The last field is the entry­
point ordinal value. 

The first string in the resident-name table is the module name . The first 
string in the nonresident-name table is the module description . 

D.9 hnported-Names Table 

The imported-names table contains the names of modules that contain 
entry points imported by the module. The table contains one or more 
entries. Each entry starts with a byte that specifies the length of the name 
in bytes. If the byte is zero, it specifies the end of the table . The byte is 
followed immediately by the name, a character string. The string is not 
null- term in a ted. 

D.lO Segments 

The segments contain the data that is to be loaded into memo�y for the 
program or library . The format of the data depends on the segment type, 
as specified by field Ox0004 in the segment table . 

If the segment is not iterated, it consists of the number of bytes specified 
in field Ox0002 in the segment table . If the segment has iterated data, the 
segment has the following fields: 

Field 

OxOOOO 

Ox0002 

Ox0004 

666 

Description 

Specifies the number of iterations. 

Specifies the number of bytes of data. 

Specifies the data bytes to be repeated.  



Format of MS OS/2 Executable Files 

If the segment has relocation information , the relocation information con­
sists of one or more relocation items .  The relocation information starts 
with a word that specifies the number of relocation items. Each relocation 
item has the following fields: 

Field 

OxOOOO 

Ox0001 

Ox0002 

Description 

Specifies the relocation type .  It can be one of the follow­
ing values : 

Value 

Ox02 

Ox03 

Ox05 

Meaning 

1 6-bit segment selector or address . 

32-bit address. 

1 6-bit address offset .  

Specifies t h e  relocation flags . I t  can b e  one of the follow­
ing values: 

Value 

OxOO 

Ox01 

Ox02 

Meaning 

Internal reference. 

Imported by ordinal. 

Imported by name. 

Ox04 Additive reference . 

Specifies the offset within the segment of the source 
chain . If the additive flag is set, then add the target 
value to the source contents instead of replacing the 
source and following the chain . The source chain is a 
linked list within this segment of all references to the 
target .  The list ends with the value OxFFFF . 

The source for each relocation has a specific format based on the reloca­
tion flags. The following lists define each of the source formats. 

An INTERNALREF source has the following fields: 

Field 

OxOOOO 

Ox0001 

Ox0002 

Description 

Specifies the segment number for the fixed segment, or 
OxFF if the segment is movable . 

Specifies a reserved value .  It must be zero .  

Specifies the ordinal value of the entry point if  the seg­
ment is movable . Otherwise, it specifies the offset into 
the segment. 

567 



Microsoft Operating System/2 Programmer's Reference 

An I:NfPORTNAME source has the following fields: 

Field 

OxOOOO 

Ox0002 

Description 

Specifies the module reference . For more information, 
see Section D .6 .  

Specifies the  offset within the  imported-names table to 
the function name . 

An I:NfPORTORDINAL source has the following fields: 

Field 

OxOOOO 

Ox0002 

Description 

Specifies the module reference .  For more information , 
see Section D .6 .  

Specifies the  ordinal value for the  imported function . 

If a segment has debugging information, the first word specifies the 
number of bytes of debugging information . The remaining bytes are the 
actual debugging information . 

568 




