
Microsoft® Windows
Software Development Kit

Programmer's Reference

Version2.0

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation . The software
described in this document is furnished under a license agreement or nondisclosure
agreement . The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes . No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose other than the purchaser's personal use without the written permis­
sion of Microsoft Corporation .

e> Copyright Microsoft Corporation, 1987. All rights reserved.
Simultaneously published in the U.S . and Canada.

Microsoft®, the Microsoft logo, and MS-DOS® are registered trademarks of
Microsoft Corporation.

Epson® is a registered trademark of Epson America, Incorporated.

Hewlett Packard® and LaserJet® are registered trademarks of Hewlett-Packard Corporation.

Intel® is a registered trademark of Intel Corporation.

Document No. 050051053-200-102-1087
Part No. 00475

File Formats

Figure 7 . 1 shows the schematic of a 10 X 12 pixel character :

. . . . * *

. . . * . . * . . .

. . * * . .

. . * * . .

. . * * . .

. . * * * * * * . .

. . * * . .

Figure 7 .1 10 X 12 Pixel Character

The bytes are given here in pairs, each pair corresponding to one scan line
(10 pixels and 6 bits of padding) :

0000 OBOO 1200 4100 4100 4100 3FOO 4100 4100 0000 0000 0000

Note that the second byte of each pair in this particular case is always
zero.

7.3 Executable-File Header Format

An executable file contains Windows code and data, or Windows code,
data, and resources. A header, with information about segment entry
points, stack offsets, and stack sizes, is added to the beginning of this
executable file. The loader uses this header information when it loads
the executable segments in memory. The header is broken into two
parts: an old-style header and a new-style header.

7 .3 . 1 Old-Style Header

The old-style header (WlNSTUB) contains information that the loader
expects for a DOS executable file. It contains a stub program that the
loader can place in memory when necessary, it points to the new-style
header, and it contains a relocation table .

645

Microsoft Windows Programmer's Reference

Figure 7 . 2 illustrates the four distinct parts of the old-style executable
header:

Beginning of
t-------------I J new-style header

Relocation table

Figure 7.2 WINSTUB--Windows Old-Style Header

The loader uses the word value at offset 18H in the old-style header to
determine whether a new-style header follows; if this value is 40H, the
loader assumes that a new-style header will be found . (This value, 40H,
is the address of the relocation table .) If a new-style header does exist,
the long-word value found at offset 3CH in the old-style header gives the
relative byte offset from the start of the old-style header to the start of
the new-style header.

7 . 3 . 2 New-Style Header

Because Windows executable files are often larger than one segment (64K),
additional information (that doesn 't appear in the old-style header) is
required so that the loader can properly load each segment . The new-style
header was developed to provide the loader with this information auto­
matically .

Sections 7 . 3 . 3 through 7 . 3 . 1 0 describe each of the eight entries in the new­
style header. Each section contains a description of an entry and informa­
tion about the various components of an entry in the new-style header.

7 . 3 . 3 New-Style Header Information Block

The first entry in the new-style header contains general header informa­
tion , as well as information that Windows copies to the module table . (The
module table contains information that the linker uses for dynamic link­
ing.) Windows copies the information from location (relative offset) OOH to

646

File Formats

the end of the information block into the module table . The following list
describes the general information found in this block; the locations are
relative to the beginning of the header- information block :

Location

OH

2H

3H

4H

6H

8H

CH

EH

Content

Signature word .
N is the low-order byte .
E is the high-order byte .
Version number of the linker.
Revision number of the linker.
Offset of the entry table (relative to the beginning
of the new-style header) .
Number of bytes in the entry table .
CRC-32 of the entire contents of the file (with
the subsequent words taken as 00 during the
calculation) .
Keyword .

OOOOH

OOOlH

0002H

2000H

NOAUTODATA
SINGLEDATA (Solo) .
:MULTIPLEDATA (Instance) .
Errors detected at link time .

8000H Library module.
The SS :SP information is invalid and CS :IP points to an
initialization procedure called with AX equal to the module
handle . This initialization procedure must execute a far
return to the caller, with AX not equal to zero indicating
success and AX equal to zero indicating failure to initialize.
DS is set to the library's data segment if the SINGLEDATA
keyword is set . Otherwise, DS is set to the caller's data seg­
ment .
Only executable programs that have their SINGLEDATA
keyword set may be dynamically linked. If SINGLEDATA is
set, :MULTIPLEDATA must be cleared .
Segment number of the automatic data segment (index into
the segment table) .
EH is set to zero if the SINGLEDATA and :MULTIPLE­
DATA bits are cleared .

647

Microsoft Windows Programmer's Reference

lOH

12H

14H
18H

lCH
lEH
20H

22H

24H

26H

28H

2AH

2EH
30H

32H
34H

648

Initial size (in bytes) of the dynamic heap added to the data
segment . This word equals zero if there is no local alloca­
tion .
Initial size (in bytes) of the stack added to the data seg­
ment. This word equals zero if SS does not equal DS.
Segment number:offset of CS :IP.
Segment number:offset of SS:SP.
Segment number is an index into the module 's segment
table .
The first entry in the segment table is segment number 1 .
If S S equals the automatic data segment and SP equals
zero, the stack pointer is set to the top of the automatic
data segment, just below the additional heap area.
Number of entries in the segment table .
Number of bytes in the nonresident-name table .
Offset of the segment table, relative to the beginning of the
new . exe header.
Offset of the resource table, relative to the beginning of the
new . exe header.
Offset of the resident-name table, relative to the beginning
of the new . exe header.
Offset of the module-reference table, relative to the begin­
ning of the new . exe header.
Offset of the imported-names table, relative to the begin­
ning of the new . exe header.
Offset of the nonresident-name table, relative to the begin­
ning of the file .
Number of movable entry points.
Shift count of the logical-sector alignment, log (base 2) of
the segment sector size (default 9) .
Number of reserved segments.
10 dup {0) reserved .

File Formats

7 .3.4 Segment Table

The segment table contains entries for each segment in the executable file.
The following subentries appear within each entry; their locations are rela­
tive to the beginning of the entry :

Location

OH

2H

4H

Description

Logical-sector offset (n byte) to the contents of the
segment data, relative to the beginning of the file .
Zero means no file data.
Length of the segment in the file (in bytes) . Zero
means 64K.
Keyword .

OOOOH

OOOlH

0007H

OOlOH

0040H

OlOOH

FOOOH

CODE Code-segment type .
DATA Data-segment type .
TYPE-.MASK Segment-type field .
MOVEABLE Segment is not fixed .
PRELOAD Segment will be preloaded;
read-only if this is a data segment .
RELOCINFO Set if segment has relo­
cation records.
DISCARD Discard priority.

6H Minimum allocation size of the segment (in bytes) .
Total size of the segment. Zero means 65,536 .

7 . 3 .5 Resource Table

The resource table follows the segment table and contains entries for each
resource in the executable file. The following list describes the subentries
within each resource entry; their locations are relative to the beginning of
the entry:

Location

OH

2H

Description

Alignment shift count for resource data.
Type ID: it is integer type if the high-order bit is set
(8000H) ; otherwise, it is the offset to the type string,
relative to the beginning of the resource table. If the
type ID equals zero, it marks the end of the resource
records .

649

Microsoft Windows Programmer's Reference

4H
6H

AH

CH
EH

lOR

12H

1 6H

17H

Number of resources for this type .
Reserved .
Number of resources/copies of the resource entry.
Offset to the contents of the resource data, relative
to the beginning of the file; the offset is in terms of
alignment units specified at the beginning of the
resource table .
Length of the resource in the file (in bytes) .
Keyword .

OOlOH
0020H
0040H

MOVEABLE Resource is not fixed .
PURE Resource can be shared .
PRELOAD Resource is preloaded .

Resource ID. It is integer type if the high-order bit
is set (8000H) ; otherwise, it is the offset to the
resource string, relative to the beginning of the
resource table .
Reserved .
Resource type and name strings are stored at the
end of the resource table . Note that these strings
are not null-terminated.
Length of type or name; equals zero if end of
resource table .
Text of type or name; case-sensitive .

7 . 3 .6 Resident-Name Table

The resident-name table follows the resource table, and contains module
names. Strings in the resident-name table are case-sensitive; they are not
null-terminated. The following list describes the subentries and their loca­
tions with respect to the beginning of each entry:

Location

OOH

OlH to XXH
XX + lH

650

Description

Length of string. This byte equals zero if there are
no more strings in the table .
Text of character string.
Ordinal number (index into entry table) .

File Formats

7.3.7 Module-Reference Table

The module-reference table follows the resident-name table . Each entry
contains an offset for the module-name string within the imported-names
table; each entry is two bytes long.

7 .3.8 Imported-Name Table

The imported-name table follows the module-reference table . This table
contains the names of modules that were imported by the executable file .
Each entry is composed of a one-byte field that contains the length of the
string, followed by any number of characters. The strings are not null­
terminated .

7.3.9 Entry Table

The entry table follows the imported-name table . This table contains
bundles of entry-point ordinal values. (The ordinal value of the first entry
point is the number 1 .) The loader scans the bundles, searching for a
specific entry point and, upon finding the entry point, multiplies that
point 's ordinal value by the entry size in order to index the entry properly.

The linker forms bundles in the most dense manner it can, under the
restriction that it cannot reorder entry points to improve bundling.
The reason for this restriction is that other . exe files may refer to entry
points within this bundle by their ordinal value , as described in the
following table :

Location

OH

IH

Description

Number of entries in this bundle. All records in one bun­
dle are either movable or refer to the same fixed segment.
This byte equals zero if there are no more bundles in the
entry table .

Segment indicator for this bundle.

000

OFFH

Unused .

Movable segment; segment number is in the
six-byte entry shown in following list :

DB Keyword .
0000 0001 Set if the entry is exported.
0000 0010 Set i f the segment uses
shared data segments .

651

Microsoft Windows Programmer's Reference

INT 3FH.

DB Segment number.

DW Offset.
Other-Segment number of the fixed segment .
If this is a fixed segment, the entries are three
bytes:

DB Keyword .
0000 0001 Set if the entry is exported .
0000 0010 Set if the entry uses a glo­
bal (shared) data segment .
The following assembly-language
instruction must be the first instruc­
tion in the prologue of this entry:
MOV AX , DS -va l ue
This may be set only for SINGLEDATA
library modules.

DW Offset.

7 .3 .10 Nonresident-Name Table

The nonresident-name table follows the entry table . The first entry
in a nonresident-name table is a module description . Strings in the
nonresident-name table are case-sensitive and are not null-terminated.
Each entry in the table is of variable size . The following list describes
the subentries and their locations with respect to the beginning of
each entry:

Location

OOH

01H to XXH
XX + 1H

652

Description

Length of string. This byte equals zero if there are
no more strings in the table .
Text of character string.
Ordinal number (index into entry table) .

